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Abstract. Precise understanding of the scene around the car is of ut-
most importance to achieve autonomous driving. Convolutional Neural
Networks (CNNs) have been widely used for road scene understanding
in the last few years with great success. However, most of these networks
have a complex architecture which needs a complex system to be de-
ployed in the car. Typical systems today take the input from cameras
placed around the car and the CNNs process them to provide the un-
derstanding of the environment. Various hardware manufacturers today
are including hardware accelerators in their System on Chips (SoCs) for
certain computer vision tasks such as Optical Flow (OF), Stereo Vision
(SV) which can achieve good accuracy and fast runtime. If these accel-
erators can be used in tandem with the CNN to enhance the accuracy
of perception, then it is hugely beneficial. In this paper, we explore the
possibility of using the Dense Optical Flow output from the hardware
accelerator as input along with the image for CNNs to be able to perceive
the scene better and faster. We show that by fusion of optical flow and
image, mean Intersection over Union (IoU) of segmentation improves by
over 1% and accuracy of major classes such as road, person, rider, mo-
torcycle and bicycle improves by 2%, 1%, 5%, 7% and 11% respectively.

Keywords: Convolutional Neural Networks (CNN) - Dense Optical Flow
(DOF) - Stereo Vision (SV) - Computer Vision - Autonomous Driving -
System on Chip (SoC).

1 Introduction

Object detection and localization around the ego vehicle is of great importance
for driver assistance systems and autonomous driving systems. The current trend
is to use convolutional neural networks (CNNs) for the scene perception task and
provide the locations of various objects around the ego vehicle. CNNs are used
for providing semantic information [4] [24], object detection information [19]
[8], scene 3D reconstruction [30] and object motion information [27]. Various
sensory inputs like camera [4], lidar [32] and radar [9] have been used by CNNs
to perceive the environment. Despite these efforts, the accurate delineation of
object boundaries remain a challenge.
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Most state of the art CNNs assume very high compute and often cannot be
deployed in small systems that are present in the cars. There are various restric-
tions on systems that can be deployed in the car: thermal footprint, memory
footprint, placement of the system which impacts how the sensors are connected
etc, all of which have a direct impact on the cost these systems. In order to
meet the thermal and memory bandwidth constraints, many hardware manu-
facturers are providing accelerators or fixed processing engines for CNNs, dense
optical flow (DOF) and stereo vision (SV) in their Sytem on Chip (SoC) [1]
[3] [2]. The typical compute supported by these accelerators are between 1 - 4
Tera-Operations per Second (TOPS) within a power budget of 5W. Given the
limited compute available on the SoC, it is critical to have an optimized CNN
for the perception task and obtain the best performance. Since DOF and SV
engines can be run in tandem on the respective accelerators, it would be very
beneficial if CNN can take advantage of the motion and depth cues to improve
the perception accuracy. Also, this helps to optimize the network to be smaller
and meet the accuracy and run time requirements.

[27] shows that optical flow is very useful in detecting moving objects like
vehicles and pedestrians. [17] show that motion boundaries improve semantic
segmentation. However, the DOF output undergoes a lot of processing before
it is fused with image input. In this paper, we propose to leverage the motion
cues by using the DOF outputs from the accelerators with minimal preprocess-
ing before combining it with the image as an input to the CNN, in order to
have an optimal and real-time implementation on SoCs that can be deployed
in the car. In order to simulate the DOF outputs from hardware accelerators,
we use the Opencv Farneback [13] function. The Opencv Farneback function
gives a good representation of the DOF algorithm present in the SoCs as most
hardware companies benchmark their algorithm against it and generally perform
better. We consider different formats of optical flow data such as magnitude only,
magnitude and direction, color wheel format etc. concatenated with the RGB
channels of the image as input to the CNN and analyze its performance for
semantic segmentation task.

The rest of the paper is organized as follows: Section 2 provides information
on the related work. Section 3 details the proposed method for incorporating
optical flow input in segmentation task. Section 4 shows the experimental results
and discussions. Finally, section 5 provides concluding remarks.

Fig. 1: Typical encoder-decoder architecture of CNN based semantic segmenta-
tion network.
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2 Related Work

Semantic Segmentation: [20] were the first to propose an end-to-end CNN for
semantic segmentation. They modified the last layers of the CNN, thus producing
fully convolutional neural network (FCN). Due to the large receptive fields of
FCNs, the localization of object boundaries is insufficiently precise. In order to
overcome this, many solutions were proposed such as applying a fully connected
conditional random fields (CRFs) to the output of the CNN [10] or introducing
global energy model along with boundary cues [6]. These post processing steps
require additional parameter tuning and compute time. [4] proposed an encoder-
decoder based architecture which requires one fourth of memory usage and about
half the inference time compared to FCNs, making it an ideal architecture for
efficient segmentation. Figure 1 shows the encoder-decoder type architecture for
semantic segmentation. The encoder extracts features from the image which is
then decoded to produce the semantic segmentation output. ImageNet [12] pre-
trained networks such as VGG16 [28], Resnet [16] are typically used as encoder.
In early architectures [4] [26], decoder was a mirror image of encoder and had
the same complexity. Newer architectures use a relatively smaller decoder. There
can also be additional connections from encoder to decoder. For example, Segnet
[4] passes max-pooling indices and U-Net [26] passes intermediate feature maps
to decoder as well.

Motion Estimation: Optical flow is an important step in deriving motion
boundaries. [17] use motion boundaries along with images to improve semantic
segmentation. The motion boundaries are computed based on a learning based
prediction proposed in [31]. This post processing of optical flow to obtain motion
boundaries involves additional computation and memory usage, unlikely to be
available on SoCs that are deployed in the car. [27] consider two stream approach
where they have separate encoders to extract features from the image channels
and the DOF channels and concatenate these features. This results in duplicating
the encoder network which hugely impact the size and run-time of the network.
Also, the optical flow input is obtained from Flownet [14] type CNN which
outputs color wheel representation of the optical flow, which requires additional
processing to generate it. [23] derived motion boundaries from the gradient of
optical flow computed by traditional computer vision approach and concentrated
on motion of only single object in the scene, which is typically not the case in
an autonomous driving system. [6] also show that motion boundaries can be
leveraged to improve semantic segmentation. However, the motion boundaries
are used as additional modality in a late fusion post processing step, which
increases the computation and complexity of the system, similar to [27]. [27]
and [17] use KITTI [15] and CamVid [7] dataset respectively, which have very
few images with segmentation annotations. [27] uses a total of 1950 frames from
KITTI raw dataset [15] and [17] uses only 367 images for training and 233 images
for testing from the CamVid [7] dataset.
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Current frame

Previous frame Segmentation Qutput

Fig. 2: Overview of the pipeline used in our approach.

(a) Sample image of normalized (b) Sample image of angle of flow
magnitude of flow vectors. vectors computed.

P-

(¢) Sample image of color-wheel (d) Sample image of scaled magni-
representation of flow vectors. tude representation of flow vectors.

(e) Sample image of flow vector in (f) Sample image of flow vector in
direction x cast into 8-bit. direction y cast into 8-bit.

Fig. 3: Different formats of DOF inputs considered.



Title Suppressed Due to Excessive Length 5

3 Proposed Method

In this section, details of our approach are provided. Figure 2 shows the block
diagram explaining the pipeline of our approach. The DOF output is obtained
using the current and previous frame. The DOF output is then concatenated
with the current frame as additional channels before they are input to the CNN.
There are multiple methods of representing the DOF data as discussed in Sec-
tion 3.1. The most important aspect of concatenating optical flow with image is
the normalization of the optical flow data such that the value of the flow vectors
are in the same range as that of image pixels. The most effective representation
which provides optimal run-time and improved segmentation performance is de-
termined by various experiments as discussed in Section 4. We propose a method
of scaling the flow vectors by a fixed constant in order to reduce the amount of
additional processing requirements and still improve semantic segmentation per-
formance.

3.1 Dense Optical Flow data

The DOF data is computed using the Opencv Farneback DOF algorithm [13].
The default settings are considered to generate the flow output. The Farneback
algorithm outputs 32-bit floating point flow vectors in x and y direction. From
this, different formats of DOF inputs for CNN were computed which are as
follows:

— Normalized magnitude: Magnitude is computed from the dx,dy flow vectors
and normalized in the range 0-255 8-bit unsigned integer format to be in the
same range as image channel input as shown in Figure 3a.

— Angle: Angle of direction is computed from dx,dy flow vectors and repre-
sented in degrees in range 0-180 8-bit unsigned integer format as shown in
Figure 3b.

— Color wheel format: The flow vectors are represented in the color wheel
format similar to Middlebury dataset [5] where the color represents the di-
rection of the flow and intensity of color represents the magnitude of the flow
as shown in Figure 3c.

— dx, dy: The flow vectors in each direction dx, dy typecast to 8-bit unsigned
integer format as shown in Figure 3e and Figure 3f.

— Scaled magnitude: Magnitude is computed from the dx,dy flow vectors and
scaled by a fixed number (255) uniformly as shown in Figure 3d. This is done
in order to simplify the preprocessing step.

All the above formats of DOF output were considered for fusion with im-
age channels to evaluate the performance of semantic segmentation, which are
discussed in Section 4.

3.2 Segmentation

An encoder-decoder type architecture similar to MultiNet [29] is used for the
segmentation task. The encoder is Resnet10 [16] architecture and the decoder is
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Encoder

Decoder

Fig. 4: Network architecture diagram.

a cut down version of FCNS8 [20] architecture, with only three upsample layers
similar to the MultiNet [29] architecture. The encoder and decoder is combined
similar to the MultiNet architecture, where the intermediate layers from the
encoder are connected to the decoder using skip connections. The network ar-
chitecture is as shown in Figure 4. Different inputs for the motion stream along
with image are considered with the same network architecture. Pixel-wise cross
entropy loss is used for the network. In order to compensate for the low repre-
sentation of certain classes, other loss functions such as median frequency based
weighted cross entropy loss function [4] and alpha focal loss [18] were also tried.

4 Experiments and Results

In this section, the experimental setup and the results of various experiments
are detailed.

4.1 Dataset

The proposed framework is trained and tested on the challenging Cityscapes
dataset [11]. Although there exists other motion segmentation datasets such as
[15] [7] [25] [21] [22], they are either synthetic [21], relatively small [15] [7] [22]
or has limited camera motion [25] unlike what is present in autonomous driving
scenes. The Cityscapes dataset [11] provides 5000 images with fine pixel-wise
annotations, along with the sequence of images which can be used to compute
DOF data. Out of 5000 images, 2975 images are used for training and 500 images
are used for evaluation. The results presented by the various experiments are
based on the evaluation set. For computing DOF, only two frames (current
and previous frames) were considered in order to mimic the actual hardware
accelerator setup.

4.2 Experimental Setup

For all the experiments, the network architecture is kept same as shown in Figure
4. A baseline with the network configuration using image only input is obtained
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Table 1: Semantic Segmentation Results on Cityscapes. global avg accuracy,
precision, recall, Fl-score, mean IoU, and per-class accuracy is shown. Only 7
classes of the 20 are shown due to limited space.

Avg Accuracy|Precision|Recall|F1-score|Mean IoU Per-Class Accuracy
Road [Sidewalk|Person|Rider| Car [Motorcycle|Bicycle
Image (baseline) 84.91 87.16 |84.91| 85.24 39.59 [95.01| 72.16 |65.60 | 6.65 |92.05 8.50 46.25
NormMag+Image 85.10 87.72 |85.11| 85.63 39.65 |96.12| 67.60 |62.40|11.32|92.10| 14.49 58.20
NormMag+Ang+Image 84.83 87.02 |84.83| 85.08 39.74 |94.87| 73.23 | 63.57 | 4.89 |90.40 9.51 52.84
Colorflow+Image 84.67 86.31 |84.67| 84.75 39.56 |94.98| 72.23 |63.53 | 3.19 [90.57 9.51 56.41
dx+dy+Image 85.03 87.40 |85.03| 85.42 39.18 |95.65| 69.75 | 58.60 | 2.82 |89.87 5.10 48.93
ScaledMag+Image 85.33 87.48 |85.33| 85.68 40.79 |(97.05| 67.32 | 66.75 |11.59]91.32 14.19 57.34
Image(WCEL) 73.78 70.91 | 73.78| 69.57 32.83 |85.95| 68.36 | 62.68 |54.54|79.98| 47.92 63.34
NormMag+Image(WCEL) 73.95 72.00 |73.95| 69.89 33.63 |82.30| 75.21 |71.98|40.78|81.31 41.67 71.47

first. Adam optimizer is used with a learning rate of 5e¢™>. No decay of learning
rate is used during the training and L2 regularization is used while training.
The network is trained for a maximum of 30 epochs with early stopping based
on validation loss with a patience of 5 enabled.The encoder is initialized with
the Resnet pretrained weights on Imagenet [12] and the transposed convolution
layers of the decoder are initialized to bilinear upsampling, while training the
network with image only input. For the network structure with additional chan-
nel input from optical flow data, the pretrained weights from the network trained
using image only input, are used. The image resolution is 1024x512.

The evaluation metrics used in the segmentation are global average accuracy,
precision, recall, F1-score and mean intersection over union (IoU). The individual
class accuracies are also evaluated based on the confusion matrix results.

Table 2: Semantic Segmentation Results on Cityscapes. Per-Class IoU for the 7
classes.

Per-Class IoU
Road [Sidewalk|Person|Rider| Car |Motorcycle|Bicycle
Image (baseline) 88.04| 54.99 | 42.46 | 5.96 | 75.30 7.56 39.65
NormMag+Image 88.09| 55.01 | 42.44 | 9.32 |75.98| 10.74 43.03
NormMag+Ang+Image [87.73| 54.16 | 41.39 | 4.53 |76.47 8.11 40.77
Colorflow+Image 87.90| 54.84 |40.93 | 3.03 |76.42 7.95 41.84

dx+dy+Image 88.23] 54.70 | 41.29 | 2.70 | 76.77| 4.76 | 38.52
ScaledMag+Image  |87.96| 53.96 |44.18| 9.65 |76.96] 6.44 | 43.56
Image(WCEL) 80.97| 42.90 | 36.37 |13.74]65.84| 6.13 | 34.50

NormMag+Image(WCEL)| 78.85| 40.48 | 35.25 |14.91|67.86 7.14 32.55

4.3 Results and Analysis

Table 1 and Table 2 shows the evaluation results of various experiments per-
formed on the Cityscapes dataset. It clearly shows that using optical flow along
with image channels improves the average accuracy and mean Intersection over
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(a) Result with image only as in- (b) Result with image and norm
put. magnitude as input.

(c) Result with image and color (d) Result with image and norm
format flow as input. magnitude and angle flow as input.

(e) Result with image and dx,dy (f) Result with image and fixed
flow as input. scaled magnitude as input.

(h) Result with image and norm
(g) Result with image only as input magnitude as input using weighted
using weighted Cross Entropy loss. Cross Entropy loss.

(i) Ground truth result of segmen- (j) Ground truth result of segmen-
tation overlay on the image. tation of the image.

Fig. 5: Sample results from various experiments on Lindau sequence of Cityscapes
dataset .
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(a) Result with image only as in- (b) Result with image and norm
put. magnitude as input.

[i |
™
HE

(c) Result with image and color (d) Result with image and norm
format flow as input. magnitude and angle flow as input.

(e) Result with image and dx,dy (f) Result with image and fixed
scaled magnitude as input.

flow as input.
e

(g) Sample result with image only (h) Sample result with image and
as input using weighted Cross En- norm magnitude as input using
tropy loss. weighted Cross Entropy loss.

Fig. 6: Sample results from various experiments on Berlin sequence of Cityscapes
dataset.
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Union (mean IoU). A closer look at other metrics shows that using the normal-
ized magnitude as shown in Figure 3a provides the best precision, with significant
increase in class accuracies for road, rider, car, motorcylcle and bicyle, but de-
creasing class accuracies for persons and sidewalk. The flow vectors for person
and sidewalk is very less and hence when normalized, it is close to zero. The
mean IoU is less compared to the state of the art. This is due to two factors:

— The small size of the network used to obtain real-time performance
— The under represented classes such as pole, wall, fence, truck, bus, train, mo-
torcycle, rider, traffic sign and traffic light classes of the Cityscapes dataset

The per-class IoU improves significantly for all moving objects such as persons,
riders, cars and bicycle as shown in Table 2. Computing the normalized magni-
tude involves significant amount of preprocessing. First, the distribution of the
flow in an image has to be computed and then remapped to 0-255 range by mul-
tiplying each flow with a different scaling factor. In order to reduce the amount
of preprocessing, a simple fixed scaling of magnitude was implemented where the
magnitude of each flow vector was multiplied by 255 which is as shown in Figure
3d and the results are as shown in row 6 of Table 1. As it can be seen, the overall
metrics are improved further. The accuracy for person is also improved due to
the scaling, as compared to the normalized magnitude approach. The proposed
scaling approach scales any flow vector greater than 0 to 255, thereby removing
the importance of flow vectors for objects that are moving faster, essentially con-
verting it into a binary image. The scaling factor can be adjusted to maintain
the importance of fast moving objects and can even be a learned parameter.
Figure 5 and Figure 6 shows sample results of segmentation considering various
formats of input to the network. One interesting observation from the results is
the improvement in accuracy in the segmentation of road class, which is counter
intuitive. This is because the optical flow is inaccurate on the road surface and
hence typically made invalid or void for those regions, thus helping the CNN to
classify the road class better.

Experiments with different loss functions such as weighted cross entropy and
alpha focal loss were tried in order to improve the segmentation of classes such as
rider, motorcycle and bicycle which are under represented. Row 7 and 8 of Table
1 shows the results of the network trained with image and image + normalized
magnitude of optical flow input respectively, using weighted cross entropy loss.
Median frequency [4] of classes were used to weight the loss function accordingly.
It clearly shows that the under represented classes such as rider, motorcycle and
bicycle hugely improve. However, the other classes such as road, pedestrian and
car which have good representation in the dataset suffer as they are weighted less.
Along the same lines, alpha focal loss [18] was also tried, but no improvement
was observed.

5 Conclusion

In this paper, we explored combining dense optical flow data in various formats
along with image to improve semantic segmentation. We have shown that by
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combining normalized magnitude of optical flow with image, the accuracy for
segmenting moving objects and road improves a lot. We also present a simpler
method to scale magnitude of optical flow and combining it with image, thereby
reducing the amount of preprocessing needed and still improve the segmenta-
tion results. Furthermore, we can deduce the scaling parameter by a learning
approach. DOF and CNN accelerators are present in several SoCs and hence we
have provided analysis on how best to utilize them in the SoC.
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